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Chapter 1

Introduction

In 1912, Victor Hess published observation results of radiation measurements he con-
ducted during 6 balloon flights up to an altitude of 5200 m. He concluded that beside
radiation originating from radio active material at the Erath’s surface an additional
unknown component is contributing to the measured flux which increases with alti-
tude. He closed his publication with the announcement to ‘concentrate future research
on this unknown radiation’ |1|. This ‘future research’ rapidly grew during the follow-
ing decades to a large field of fundamental research and brought him the Nobel Price
in 1936 for the discovery of cosmic rays.

Today about 100 years later the energy spectrum of cosmic rays have been probed
by numerous experiments over several orders of magnitude up to the highest energies
exceeding 102 eV. In 2003 the Pierre Auger Observatory started operating with the
purpose to investigate the origin and nature of ultra-high energy cosmic rays (UHE-
CRs) which still holds an unsolved question.

Recent works investigating the arrival direction of UHECR, at the Pierre Auger Ob-
servatory favor an astrophysical scenario with nearby sources situated outside our
Galaxy some Mpc away [2]. Another work, disconnected from arrival direction mea-
surements, uses a combined method to fit the measured energy and atmospheric depth
of extensive air showers induced by UHECRSs to a source model. The most common
approach is a simple astrophysical scenario assuming a homogeneous and isotropic
source distribution injecting a representative mass composition following a power law
spectrum with a maximal rigidity cutoff. Sources were characterized by a hard energy
spectrum, low maximum injection energy and a heavy chemical composition [3].

In this work we modify the combined fit method by introducing a nearby point source
to the homogeneous background. The aim is to establish an analysis which resolves
the distance of a nearby source with a significant contribution.

This work is structured as follows: First, cosmic rays are introduced using a phe-
nomenological approach, followed by a summary of observation measurements rele-
vant to this work and possible acceleration mechanisms. Afterwards the simulation
of sky regions with and without nearby sources expressed in energy and atmospheric
depth measurement is described. Then the fit model is introduced considering a
nearby UHECR source over a homogeneous background which extends the basic
model in the combined fit. Afterwards the Markov Chain Monte Carlo based fit



algorithm is introduced. Finally, the performance of the method to fit the simulated
sky regions is evaluated and discussed in the physical context.



Chapter 2

Detection of Ultra-High Energy
Cosmic Rays

About hundred years after the famous balloon experiment of Victor Hess, numerous
experiments have been built to better understand the nature of his discovery, the
cosmic rays. Today we know that cosmic rays are charged particles, photons, and
neutrinos, covering energies of many orders of magnitude. Cosmic rays above an
energy of 10'®eV are called ultra-high energy cosmic rays (UHECRs) which still
present a secret to mankind [4].

Cosmic rays produce extensive air showers in the Earth’s atmosphere, which will be
explained in this chapter. Furthermore the largest ground based experiment built
to investigate UHECRs, the Pierre Auger Observatory, is presented with technical
details of its measurement principle.

2.1 Extensive Air Showers

The Earth’s atmosphere is constantly hit by cosmic rays which collide with air
molecules, creating a cascade of secondary particles which further interact or de-
cay. These cascades were first observed in the 1920s by identifying tracks of a single
charged particle splitting into two secondary particles. Later on in the 1930s Pierre
Auger and his co-workers discovered extensive air showers as they simultaneously
measured these secondary particles with an array of detectors, placed in some dis-
tance from each other. Using this principle of coincident detection they achieved
a measurement of extensive air showers by only instrumenting 1% of the effective
area [4].

As the primary particle interacts with the atmosphere, different particle types are
created. These can be roughly categorized into three cascade components: the electro-
magnetic, the hadronic, and the muonic component, which are schematically shown
in Fig.[2.1] The hadronic component is created in an early stage of the shower devel-
opment. Mainly pions and K-mesons are produced and can either decay or re-interact
with other air molecules. Charged pions have a decay length of I; = v,+ X 760 cm,
where 7,+ is the gamma factor of the pion, and represent the dominant part of the
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Figure 2.1: left: Schematic illustration of the three main components of an extensive
air shower (electromagnetic, muonic and hadronic). right: Spacial development of
an extensive air shower showing the shower front, the zenith angle, and the stations.
Taken from [5].

hadronic shower component [4]. The electromagnetic component is the most numer-
ous part and is represented by neutral pions, which directly decay after a mean free
path of Iy = 7,0 x 2.51 x 107%cm corresponding to a mean lifetime of 7,0 = 107105,
The neutral pion decays into two photons which then probably cause electron-positron
pair-production: v — et 4+ e~ [4,5]. The third component, the muonic one, is mainly
produced by the charged pion decay n* — p* + v, and 7= — pu~ + 7,. Due to
relativistic time dilation the muons reach the Earth’s surface before decaying, where
they are measured with a ground detector [5].

A simple but powerful model of the shower development is the Heitler Model. Heitler
described a cascade induced by a primary particle which interacts with air molecules
and splits into two particles, each carrying half of the initial energy Ey. This is re-
peated after the interaction length A\ where the number of particles at the step n
grow to N = 2" and the energy of each particle is E = FEy/2". This splitting pro-
cedure is shown in Fig.[2.2] and is repeated till the particles reache a critical energy
E. = Ny/Npax which is insufficient to create new particles [6].

The production rate of secondary particles depends on the amount of matter which is
traversed by the shower. This is described by the atmospheric depth which is defined
as: .

X(ho) = / p(h)dh, (2.1)
ho
where h is the geometrical height [5].
The longitudinal development of the shower is parametrized by the Gaisser-Hillas
formula, which computes the number of produced electrons N, as a function of at-
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Figure 2.2: Schematic view of the Heitler Model to describe an electromagnetic cas-
cade. Photons create an electron-positron pair which then radiate a bremsstrahlung
photon. Taken from [7].

mospheric depth [4]:

X—Xl)Xma;“ XI—X> 2.2)

X — A eXp( )

where N"® is the number of electrons during the shower development denoted as the
atmospheric depth X, .., A is the mean free path of the primary particle and X; the
atmospheric depth of its first interaction. The value of X .., depends on the initial
energy of the primary particle Ey and the critical energy E,., where the particle loss
rate dominates over the particle production rate, and is computed as [5]:

In(Ey/E.)
In(2)

No(xX) = Nz (

Xiax = A (2.3)
A semi-empirical approach orientated to the Heitler Model showed that the number
of muons in an air shower is related to the number of decaying pions. Therefore i is
possible to model the energy of the primary particle and additional shower properties,
e.g. the elongation rate [7].

Extensive air showers are studied using Monte Carlo based simulations which are
compared to shower measurements. For instance, X,.x also depends, in addition to
the initial particle energy, on its mass [4]. Using superposition models which include
the hadronic shower component the cosmic ray mass composition is studied [§].
Nevertheless, we can not directly conclude the energy and composition of the pri-
mary particle from individual shower measurements because of fluctuations in the
shower development. It is only possible to infer this in average for a reasonably large
statistical sample. The fluctuation of the X,,., measurement can be described with
a probability density which is approximated with the generalized Gumbel distribu-
tion [9]:

)\A —z X - /1/
X = —Az—de —me B 2.4
P(Xmax) ol'(\) <e >’Z o (2:4)
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The parameters o, u and A describe the shape, location, and the scale of the shower
and depend on the cosmic ray energy and mass. These parameters have been ob-
tained empirically by fitting the Gumbel function to simulated air showers. The
air shower simulation are based on different hadronic interaction models, namely

EPOS-LHC, QSHetII-04, and Sibyll 2.1 [9]. The Gumbel distribution is presented in
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Figure 2.3: The Gumbel distribution giving the probability distribution of measuring
a Xpnax value of a cosmic ray with an energy of 10! eV. The distribution is presented
for different elements.

Fig.[2.3] for hydrogen, helium, nitrogen, and iron at the energy of 10'°eV using the
interaction model EPOS-LHC.

2.2 The Pierre Auger Observatory

The energy spectrum of cosmic rays follows a declining power law, thus the cosmic
ray flux decreases towards higher energies. At a certain point the flux is too small to
measure cosmic rays directly with satellite experiments. Ground based experiments
are needed to detect extensive air showers. The flux of cosmic rays with energies
exceeding 10'® eV is about three particles per km? per steradian per century [4]. To
accumulate enough data to explore the nature of UHECRS, detectors have to cover
a large amount of surface. The largest ground based experiment for this purpose
is the Pierre Auger Observatory. It covers a surface of about 3000km? and is sit-
uated in the Argentinian Pampa, in the province of Mendoza. Its average altitude
is ~ 1400 m which corresponds to an atmospheric depth for vertical cosmic ray air
showers of around 875 g/cm?, ideal for the detecttion of UHECR showers shortly after
their maximum shower development. Furthermore, light pollution from civilization
is very small due to the remote location [10].

In Fig.[2.4] the layout of the Pierre Auger Observatory with the detector alignment is
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Figure 2.4: Map of the Pierre Auger Observatory [11]. The surface detectors (SD)
are marked as black dots, the blue lines are the viewing angle of the fluorescence
detectors which are located at four sites around the area covered by SD. Light-blue
lines indicate the viewing angle of the low-energy extension HEAT and grey dots
mark the more dense SD array with a narrow spacing of 750 m. The blue circle shows
the position of AERA.

shown: 1660 surface detector stations (SD), consisting of water-Cherenkov detectors,
are arranged at a 1.5 km spacing in a triangular grid over the whole area, surrounded
by 24 fluorescence telescopes (FD) observing the night sky. These two detector types
represent the base line detectors. This hybrid design allows cross-calibrations and
cross-checking of measurements [4]. Besides the base line detectors additional experi-
ments are placed in the field: The Auger Engineering Radio Array (AERA) measures
the radio emission of electromagnetic shower components |12]. The infill array is a
low-energy extension where the spacing of 61 SD stations is reduced to 750m. The
sky above this area is observed by the High-Elevation Auger Telescope (HEAT) which
covers a lower energy range between 1017 eV and 10" eV [10]. To improve the recon-
struction of the mass composition, SD stations are currently in the process of beeing
equipped with scintillator detectors (Auger Prime) [11].

2.2.1 Fluorescence Detector

Charged particles in a cosmic ray air shower excite atmospheric nitrogen, which then
emits light in the wavelength band of 300 — 430 nm [13]. The detection of UHECRs
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through the measurement of fluorescence light is a well established technique already
used by previous experiments like the Fly’s Eye . The Pierre Auger Observatory
measures fluorescence light with FD during moonless nights if the weather condition
is suitable, thus the duty cycle is approximatly 15 % [10].

Four FD eyes, one shown on the left in Fig.[2.5] are situated at the perimeter of
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Figure 2.5: left: Fluorescence detector station with closed shutter. Taken from .
right: Hlustration of the layout of a flourescense telescope with its main components.

Taken from .

the detector array, each consisting of 6 fluorescence telescopes with a 30° x 30° field
of view. The telescope layout is shown on the right in Fig.[2.5] Each telescope has
a camera positioned in the focus of a 10m? segmented mirror. The camera consists
of 440 photomultiplier tubes (PMT) arranged in a hexagonal grid. The measured
UV-light is digitized every 100ns and a hierarchical trigger mechanism controls the
recording of cosmic ray air showers. The detector reaches a trigger efficiency of 100 %
over the whole area for energies exceeding 10! eV . An example event, where all
four telescopes were triggered by an extensive air shower, is shown in Fig.[2.6/ on the
left side.

The number of emitted fluorescence photons in a cosmic ray air shower is propor-
tional to the electromagnetic energy loss through charged particles in the atmosphere.
This fluorescence light is detected by FD. Using time information of triggered PMT's
the longitudinal shower profile can be read out as a track on the telescope camera. The
shower shape can be reconstructed by fitting a Gaisser-Hillas function (see equation
to the measured profile. The total energy of the initial particle can be obtained
by integrating the longitudinal profile. Shower components like neutrinos and muons
have to be taken into account since they do not emit UV-light and are invisible to
the FD detectors. Through the geometrical determination of the shower shape, the
arrival direction is reconstructed as shown in Fig.[2.6, The energy resolution for the
reconstruction is < 10 % with a 14 % systematic energy scale uncertainty ,.

2.2.2 Surface Detector

Each of the surface detector stations, shown in Fig.[2.7] contain 12,0001 of pure
water. At the top of the tank 3 photomultiplier tubes (PMT) are installed to detect
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Figure 2.6: left: Schematic observation of an UHECR event observed by four FD
stations and simoultaneously by SD stations. right: Geometry for the reconstruction

of the arrival direction and shower detector plane using time information of triggered
pixels from FD. Both taken from [13].

Cherenkov light, which is produced when relativistic particles traverse the water with
a velocity faster than the speed of light in water. To increase the sensitivity, the inner
surface is lined with reflective material. All stations are equipped with two solar panels
and two acid-lead car batteries to ensure the energy supply. To communicate with
the central data acquisition system a radio transceiver and an antenna is mounted
on top of each SD station. The SD stations have a robust design for an estimated
lifetime of 20 years .

The PMT signals are converted into a digital signal counting in vertical-equivalent-

Tt b s e e o o S
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< 340m >

i L e e
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Figure 2.7: left: Picture of a SD station with description of main components, taken
from . right: schematic view of SD station, taken from .

muons (VEM), which is the signal that a vertical muon would produce by crossing
the detector vertically. A hirarchical trigger system consisting of online and offline
trigger separates cosmic ray signals from noise and randomly triggered stations. The
trigger system also searches for coincident measurements from neighboring stations
and ensures a well defined footprint for later event reconstructions. Above an energy
of 3EeV the surface detector becomes fully efficient .

When a cosmic ray shower front hits the ground, different stations are triggered



at different times and it is possible through geometrical calculations to reconstruct
the arrival direction. Additionally, the shower shape, and therefore the footprint on
the ground, varies for different zenith angles, different energies and masses of the
primary particle. The reconstruction of the arrival directions has an uncertainty of
less than 2° for an energy above 10'®° eV and decreases towards higher ernergies [17].
In combination with the FD reconstruction the total angular resolution depends on
the cosmic ray energy and number of triggered stations. Towards higher energies the
resolution increases and gets better than 1° for energies exceeding 10! eV [1§].
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Chapter 3

Observation Measurements

The cosmic ray energy spectrum is surveyed over more than 12 orders of magnitude
with numerous experiments revealing features giving hints to the underlying origin
and acceleration mechanisms. Especially for the highest energies the composition and
arrival direction are still an object of today’s research. This chapter will point out the
most important measurements of cosmic rays to draw a picture of the current state
of research with a special focus on UHECRs and measurements done by the Pierre
Auger Observatory.

3.1 Energy Spectrum

The flux of cosmic rays depends strongly on the energy and therefore cosmic rays are
described by the differential flux which gives the number of particles per surface A,
time ¢, energy E and solid angle € [10]:

d*N

E)y=—— "
J(E) dE dAdQ dt

(E) (3.1)
The cosmic ray energy spectrum is shown on the left in Fig.[3.1] observed by different
experiments and covering energies from 10® to beyond 10?° eV. Energies below 10° eV
are deaccalerated by solar winds, which shields the solar system from these particles
[10]. The energy spectrum exceeding energies of 10 eV is described by an almost
featureless power law spectrum J(E) oc E~7. Its spectral index v varies around 3 and
has two transition regions. To discuss observations of different parts of the energy
spectrum an important aspect is that the particle flux, for example at 10'* eV is by
sixteen orders of magnitude larger then the flux at 10?°texteV. At energies below
10'° eV direct measurements are possible with air balloon or satellite experiments,
whereas for energies exceeding 10'° eV the only way to measure cosmic rays is through
detecting extensive air showers [4].

The cosmic ray energy spectrum becomes steeper at energies between 10 and
10'%eV: the spectral index changes from v ~ 2.6 to 3.1; this transition is the so
called ‘knee’. The spectral index changes again at energies between 10'® and 10! eV
to v ~ 2.6, which is the so called ‘ankle’. At energies above 4 x 10'% eV, the flux is

11
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Figure 3.1: left: Cosmic ray energy spectrum measured by numerous experiments.
Taken from [10] right: Spectrum of energies above 10> eV which is measured by air
shower experiments and muliplied by E? to visualize features in the slope and the
abrupt cut-off as described in the text. Taken from [19]

strongly suppressed and indicates a limit to cosmic rays reaching the Earth [10]. These
features are from special interest since the transition regions seem to indicate different
acceleration mechanisms and propagation effects (discussed in detail in section .
On the right hand side in Fig.[3.1] the tail of the cosmic ray energy spectrum is shown,
which is important in this work, since it could be connected to acceleration sites of
UHECRs. The shown spectrum is multiplied by E® to cancel out the slope and
visualize the cut-off.

3.2 Composition

Numerous experiments performed long-term measurements for energies below 10! eV
with sophisticated detectors that have a high charge and energy resolution to identify
different particle types. The measured flux is shown from different experiments in
Fig.[3.2 for all measured elements. The composition is dominated by hydrogen but
also heavier nuclei up to iron show a non negligible contribution to the spectrum. By
correcting the measured flux for contributions from solar winds or attenuation effects
during the propagation it is possible to rule out their composition at the acceleration
sites. The results lead to a similar abundance of elements as assumed in the universe
with two remarkable exceptions: Hydrogen and Helium exhibit an under-abundance,
which poses an unsolved question [4].

For cosmic rays exceeding 10 eV the only way to obtain information on the ini-
tial particles is through measuring extensive air showers. As outlined in section [2.1]
cosmic ray air showers fluctuate and inferring properties of the primary cosmic ray is
only possible with a reasonably large statistical sample. The most sensitive observable
related to the composition is the atmospheric depth of the shower maximum X, ...
Due to the larger cross section of an iron nuclei the air shower develops higher in the
atmosphere in comparison to a primary proton at the same energy. In average this
leads to a difference of about 100 g/ cm? in Xmax. However, shower-to-shower fluctua-
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Figure 3.2: Cosmic ray flux measured for different nuclei as function of their kinetic
energy. For a better visualization different nuclei have been scaled. Taken from [20]

tions of the order of ~ 20 to 60 g/ cm?® and a typical detector resolution of ~ 20 g/ cm?
makes it challenging to conclude individual nuclear charges for the primary cosmic
ray. This fluctuation in the X,,x observable can be described by the Gumbel distri-
bution, see [2.1] Nevertheless for larger samples it is feasible to conclude a statistical
distribution out of the X, observable. In Fig.[3.3|the mean and the Gaussian width
of the X, distribution measured by the Pierre Auger Observatory are shown as a
function of energy. For comparison with theoretical air shower simulations, predic-
tions for a pure proton and a pure iron composition are displayed. The measurements
are compatible with a proton-like composition for energies at around 10*® eV and shift
to a heavier composition towards higher energies. The highest measurements do not
exceed 1099 eV since X, is measured by FD which can not provide high statis-
tics due to its low duty-cycle [10]. A current upgrade with scintillator detectors to
the SD stations will in future infer further composition information from the shower
footprint. The new detectors allow the reconstruction of muons and electromagnetic
particles which reveals an additional insight of the shower development [11].

3.3 Anisotropy

To understand the nature of cosmic rays besides the study of energy spectrum and
composition the arrival direction is the main observable to identify their sources.
However no point sources have been identified yet at any range of ultra-high energies
and the observed arrival directions are found to be largely isotropic [10]. Recent
studies on arrival directions of UHECRs with the Pierre Auger Observatory measured

13
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Figure 3.3: left: Mean atmospheric depth and right: the rms of the shower maximum
Xax as a function of energy measured at the Pierre Auger Observatory. Additional
lines show theoretical predictions for a pure proton and iron composition with different
interaction models. Taken from [21]

a significant anisotropy on large scales [22]. Additionally a study in arrival directions
on intermediate scales found evidence for correlations between an excess in arrival
directions and nearby starburst galaxy positions [2].

3.3.1 Large Scale Anisotropy

In 2017 The Pierre Auger Collaboration reported the discovery of a statistical signif-
icant access in arrival direction with a dipolar structure towards the right ascension
at o = 100° & 10° and the declination at § = —24°%1%. Using 3 x 10* events above

8 x 10'8eV the Pierre Auger Observatory reject isotropy by 5.20 significance. This
anisotropy was modeled by a dipole structure with a 6.545(113 % amplitude. The nor-
malized event rate is computed as a function of the right ascension, fitted by the first
harmonic modulation (y?/ndf = 10.5/10) and is shown on the left in Fig.[3.4]

The analysis, detailed in [22], concluded an extra galactic origin due to the miss
match with the direction of the galactic center and the dipole position. The 2MRS
catalog of infrared detected galaxies exhibits a dipole structure but lays 55° away
from the measured dipole. After considering deflections in the galactic magnetic
field the 2MRS dipole structure points towards the excess region indicated by ar-
rows on the right in Fig.[3.4f The dipole structure is not significant for energies of
4FeV < E < 8EeV. This can be explained with stronger deflection in the galactic

magnetic field supporting the hypothesis of an extragalactic origin of UHECRs [22].
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fit of a first-harmonic modulation. The fit shows good agreements with the data:
(x*/ndf = 10.5/10). right: The flux of cosmic rays above 8 EeV in Galactic coor-
dinates. A cross indicates the direction of the reconstructed dipole. The position
of the dipole maximum position resulting from the 2MRS catalog is displayed and
its deflection in a galactic magnetic field model indicated by arrows. Both taken
from [22]

3.3.2 Anisotropy Indication Around Nearby Starburst Galax-
ies

A more recent analysis found evidence for anisotropy in the arrival directions on an
intermediate angular scale in a data set of the Pierre Auger Observatory [2]. A Sky
model of UHECR sources has been constructed using two distinct catalogs of gamma-
ray sources observed by the Fermi Large Area Telescope: active galactic nuclei (AGN)
and starburst galaxies (SBG). The individual flux of the sources is approximated by
their radio luminosity. For each catalog the model was constructed using two free pa-
rameters: the fraction of anisotropy and the search radius to account for deflections
since no galactic magnetic field model was used.

A set of 5514 events above an energy of 20 EeV with zenith angles up to 80°, measured
before 2017 April 30 by the Pierre Auger Observatory was considered in the analy-
sis. The models have been tested by comparing with an isotropic null-hypothesis [2].
Fig.[3.5 shows on the left the test statistic (T'S) which quantifies the deviation from
the null-hypothesis and was found to be the most significant for the SBG-catalog at
an energy threshold of 39 EeV. The parameter scan for this energy threshold using
the maximum-likelihood approach is shown on the right of Fig.[3.5|leading to a best fit
value of 13°jg§° search radius and an anisotropy fraction of 10 +4%. After penalizing
for the energy scan and the investigation of one more catalog, the SBG model was
found to describe the data better than the null-hypothesis with a significance of 4.00
for UHECRs exceeding an energy of 39 EeV [2].

In Fig.[3.6] excess maps of UHECRs above 39 EeV are shown. On the right, one finds
the excess observed by the Pierre Auger Observatory and on the left the modeled
excess map using the best fitting parameter for the starburst galaxy scenario is pre-
sented. Additionally the three strongest starburst galaxies namely M83, NGC4945,
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Figure 3.5: left: Scan of test statistic for comparison between the AGN and SBG
catalog and isotropic expectation as function of the threshold energy. At £ > 39 EeV
the deviation from isotropy maximize for the SGB catalog. right: Scan of the best-fit
observables of the SBG catalog in the analysis for energies above 39 EeV. Both taken

from |2].
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Figure 3.6: left: Excess map of cosmic rays reconstructed with the SBG catalog above
39 EeV. right: Excess map observed with the Pierre Auger Observatory. Both taken

from

and NGC253 are indicated. However, starburst galaxies only show correlation ev-
idence with arrival directions of UHECRs in an analysis where a realistic behavior
of the galactic magnetic field is not considered. Moreover, a connection between ob-
served large scale anisotropy and intermediate isotropy has not been identified yet .

3.4 Combined Fit Results

An analysis investigating UHECR sources, disconnected from arrival direction mea-
surements, was carried out in and : A combined fit of an astrophysical model
to the energy and shower depth measurement, recorded at the Pierre Auger Obser-
vatory, reveals source properties and constrains theoretical predictions.

The astrophysical model assumes identical UHECR sources uniformly distributed in
a comoving volume. The sources have been characterized by a rigidity-depending
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acceleration mechanism and an energy spectrum described by a power-law, injecting
a nuclei composition of *H, ‘He, N and *°Fe as representative elementd] The
injected spectrum has the form [10]

EO/ZO>

Jo(Zo, Eo) = ¢o - a(Zo) - (Eo)~ " - fcut( R

(3.2)
where ¢q is the absolute flux level of the UHECR source, a(Zy) represents the abun-
dance of the injected element Z; and ~y is the spectral index of the energy spectrum.
The function f.,; is a broken exponential function and describes the cut-off behaviour
for maximal accelerated rigidities at the source [10]:

Ey/Zy
Rcut

feut (x = ) =0(1—-2)+06(x—1) - (3.3)
where R, is the maximal rigidity and © the Heaviside function. The propagation
through the universe to Earth was simulated with SimProp [23] and CRPropa 3 [3]
(for a detailed description of CRPropa 3 see section . The composition mea-
surements on Earth have been realized for different hadronic interaction models to
generate the X, observable.

Using a Bayesian approach with a Markov Chain Monte Carlo method, the spectral
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Figure 3.7: Scan in ~-R.,: plane of the goodness-of-fit D . The color code displays
a pseudo standard deviation ngigme = VD — Dyin according to the best fit value at
Dypin. Taken from [10].

index 7y, the maximum rigidity R.,; and the chemical fractions at the source are fitted.
A scan of the likelihood space for discrete values in v and R, is shown in Fig.[3.7]
and reveals the characteristic behavior of the combined fit. A valley-like structure is
visible which is a general feature of the combined fit method [3]. Another feature is
the visibility of two minimums: the global minimum at v ~ 1 and a low rigidity-cut
of Ry ~ 105 eV and a second local minimum at v ~ 2 and R, ~ 10'*7eV. Ta-
ble[3.1] shows the the best fit values from [10] and Fig.[3.8| presents the best-fit-values

1n [3] 5 elements have been injected to enhance the goodness-of-fit by adding 2854

17



Parameter 0 )
First minimum | Second minimum

log1o(Rewt/€V) 18.56 19.88

v 0.62 2.03

H[%)] 0.1 0.0

Hel%)] 0.1 0.3

N[%)] 98.5 92.0

Fel%] 1.2 7.7

Table 3.1: Best fit parameter results from the baseline scenario specified in [10].
Displayed are the global maximum and a second local maximum found in Fig..

as simulated measurements of the energy spectrum in contrast to measurements from
the Pierre Auger Observatory.

The Combined fit was carried out using different scenarios and interaction models
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Figure 3.8: Comparison of energy spectrum and moment of the X,,.x observable
measured at the Pierre Auger Observatory. Reconstruction with the best fit results
for the global minimum on the left and the local minimum on the right. Taken
from [10].

leading to slightly different results then presented in Table[3.1] But the analysis con-
cludes a constrain in the v and R,,; parameter as shown in Fig.[3.7 with low maximum
injection energies and a chemical composition dominated by heavy elements |3}/10,24].
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Chapter 4

Origin and Propagation

This chapter will give a brief introduction about our current knowledge of possible
sources. Furthermore the propagation from possible sources towards the earth will be
discusses presenting the state-of-the-art simulation tool CRPropa3, taking all known
interaction and effects into account.

4.1 Acceleration and Possible Sources

The highest measured energies of cosmic rays exceed 10%° eV which is about 16 J and
is still an object of today’s research [10]. Especially the acceleration mechanism of
UHECRs is still unsolved. However, some well founded theories exist about possi-
ble acceleration mechanisms and at lower energies significant results have been made
during the last twenty or thirty years [4]. Today we believe that cosmic rays arriving
at BEarth with an energy below 10! eV, which is the energy range below the so called
‘knee’, are accelerated in supernova remnants inside our Galaxy. Cosmic rays with
an energy between the so called ‘ankle’” and the ‘knee’ which corresponds to energies
between 10 eV and 10*® eV are assumed to originate from either galactic or extra-
galactic sources. Evidence favors that the highest cosmic ray energies above 10 eV
are originating from sources outside our Galaxy [4},22].

Theories developed to explain the origin of UHECRs can be categorized into two fun-
damentally different approaches: ‘top-down’ models and ‘bottom-up’ models. In the
‘top-down’ model the basic idea is that the cosmic rays we observe are decay products
of an initial very massive particles with a mass of around 10%> eV. These models lead
to distinct features like a flat injection spectrum and a specific particle composition
since the decay chain leads to elementary particles and nucleons. In detail this would
imply that the gamma-ray and neutrino flux would be thirty times higher than the
nucleon flux [4]. This is clearly disfavored by measurements of the longitudinal air
shower profile by the Pierre Auger Collaboration [25].

To study theories which uses the bottom-up approach describing the acceleration of
standard model particles, one has to differentiate between two approaches: single
shot and stochastic acceleration. To achieve high enough energies with a single shot,
strong electric or magnetic fields are needed. This can be found in Magnetars which
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are young rapidly rotating neutron stars with a strong magnetic field. These ob-
jects are potentially able to accelerate cosmic rays to the highest energies we observe
on Earth. The energy, accelerated particles achieve, depends on the magnetic field
strength and thus the rotational speed of the magnetar which decreases with time
leading to an energy spectrum following a spectral index of v & 1 [10].
Enrico Fermi first introduced the idea of stochastic acceleration for charged particles
which scatter many times on massive clouds with turbulent magnetic fields. The
clouds move randomly with a velocity v, and depending on the direction the particle
enters the cloud, it can lose or gain energy (detailed calculation in [4]). It comes out
that the average energy gain of the particle is then proportional to v [4].
A more efficient acceleration mechanism is when the particle encounters a shock front.
A shock front is a wave which propagates with a higher speed than its speed of sound.
In this case the acceleration is proportional to v.. Shock fronts are assumed to occur
in supernova remnants, jets of active galactic nuclei, gamma ray bursts in starburst
galaxies, or in accretions shock around massive galaxy cluster [10].
In the case of stochastic acceleration the particle at each acceleration cycle has an
energy gain AE and thus the relative gain £ := %. After n acceleration cycles the
particle energy will be:

E,=E)(1+&" (4.1)

At each cycle the particle has a certain probability P to escape the region occupied
by the magnetic field. The number of particles exceeding a certain energy FE, is
proportional to those who remain in the acceleration system:

N(> E,) =No» (1= Peo)" (4.2)
This ansatz leads to a power law spectrum:
E.N\1-
N> E,) x (—) ! (4.3)
Eo

with 7 = 1 — In(1 — Pus)/In(1 + &) [10]. For non-relativistic shock acceleration the
spectral index is 7 =~ 2 and v ~ 2.2 to 2.3 for relativistic shock acceleration.

An acceleration site needs to preserve the particles inside the magnetic field region.
This leads to a maximal kinetic energy the particle can gain before leaving the site
depending on its size and magnetic field strength: E,.. =e-Z-B- R, where R is the
linear dimension of the site, B its magnetic field strength and Z the charge number of
the particle. The Hillas criterion is based on the gyroradius of the particle to estimate
the size and magnetic field strength to constrain possible sources:

() Go) > ez (wer) (44

Bsc denotes the average velocity of the scattering center. The graph shown in Fig.|4.1
often referred to as the ‘Hillas plot’, is presents the constraints for the magnetic
field strength and gyroradius expected for a maximal acceleration of cosmic rays.
Additional different astrophysical and cosmological objects are displayed according
to their size and magnetic field strength [4].
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Figure 4.1: The Hillas diagram visualizes the hillas criterion (c.f. equation to
accelerate a proton or a iron nuclei up to an energy of 10%° eV.The possible accelerator
sites are marked according to their magnetic field strength and their size. Taken
from [26].

4.2 Propagation Simulation with CRPropa3

Once cosmic rays leave the acceleration site and propagate through the universe
towards Earth they interact with the cosmic photon background, are deflected in
magnetic fields according to their charge and cosmological effects appear on large
propagation scales. CRPropa3 is a public available state of the art simulation tool
which considers all known significant effects to model the effects on cosmic rays dur-
ing propagation. With this framework astrophysical predictions for UHECRs inside
and outside our galaxy can be studied using high-performance computing [27]. In
order to introduce all significant effects this section will give a brief overview about
the knowledge of cosmic ray propagation and shows simulation done with C'RPropa?3
according to the discussed effects.
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4.2.1 Cosmic Photon Background

Even the largest voids of our universe are filled with photons at different wavelength,
which can interact with cosmic rays. Fig.[f.2] shows models of different wavelength
bands from the radio photons up to UV-light. The cosmic radio background (CRB)

Wavelength [m]
,10* 102 10° 102 10~ 106 108
f"T 10 Radio | Microwave | Infrared Visible uv
8,108 I
% 107
= 107

< 1061

2 10°

2]
4
£ 10
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2 10 = EBL (Dominguez '11) | |
5 1 = CRB (Biermann & ProtHeroe ’96) Il
Z 10! . il L

10710 1078 1076 1074 1072 100 102
Photon energy € [eV]

Figure 4.2: Models representing the measured Energy spectrum of the cosmic photon
background: The cosmic radio background(CRB), the cosmic microwave background
(CMB) and the extra galactic background light (EBL). taken from [10]

originates from synchroton radiation of relativistic electrons produced in radio loud
galaxies but also in normal galaxies. Models which are based on measurements predict
a photon density of greater than ncrg = 10°m=3 [10].

The dominant radiation field is the cosmic microwave background at a temperature of
Ty = 2.7255 K and a current energy density of ecyp = 0.2606 MeV m—3. The number
density of CMB photons in the universe is large: ncyg = 4.107 x 10%mm~=3. In our
standard model of cosmology the CMB is a diffuse radiation originating from the
epoch of recombination at a redshift of z ~ 1090, which corresponds to 0.37 Myr after
the big bang. At this time free electrons and protons bounded and formed hydrogen
and the universe became translucent for photons. The CMB radiation is described
by a perfect black body spectrum [28].

Outside our Galaxy space is also filled with photons emitted by stars: the extra
galactic background light (EBL). The number density of this radiation is much smaller
than the CMB but plays still a roll for cosmic rays since it limits the propagation of
UHECR [10]. A more detailed description of particular interactions is given in the
next section.

4.2.2 Photonuclear Processes

Cosmic rays propagating through the universe interact with the cosmic photon back-
ground which is strongly blue-shifted in the frame of the cosmic rays and thus reaches
energies where photonuclear processes occur. The dominant effects cosmic rays un-
dergo by interacting with the photon background are electron pair production, pion
production and photodisintegration. In CRPropa3 the interaction length of each pro-
cess is numerically calculated using models of the cosmic photon background specified
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in [10].

The process with the lowest energy threshold but the highest cross section is electron
pair production by hadrons which is described by the Bethe-Heitler process: a photon
scatters with a cosmic ray nucleus producing an electron-positron-pair, which carries
a fraction of the cosmic ray energy. Another photonuclear process is photodisinte-
gration where a background photon excites the nucleus to an unstable state. The
nucleus de-excites again by emitting a high energetic photon and protons, neutrons
or a-particles which also carry away a fraction of the primary nucleon energy. For
heavy primary particles like iron also photofission becomes relevant [10].

At a threshold energy of E ~ 145MeV pion production via A resonance starts. A
proton scatters with a photon and produces a A" baryon which then decays into a
proton or a neutron plus a pion [10]:

pry— AT = pt+a°

p+y—= At = n+x"

The highest number density of photons in the extra galactic space is represented by
the CMB with about 400 photons per cm® at an energy of ESMP = 6.34x 10 eV [28].
With a proton mass of 938 MeV and the mass of the A barion of 1232 MeV [29] the
minimum threshold energy for this process is:

2

m2 —m
2P~ 9252 x 100 eV (4.5)

Emina = W

Due to this effect the universe becomes opaque at energies around 10?° eV since the
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Figure 4.3: The mean energy of protons as a function of traveled distance. At higher
energies the energy loss is dominated by pion production. Taken from [30]

A-resonance cross section is dominating [4]. This effect apply already at lower energies
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due to the long tail of the energy distribution of the CMB. This describes a cut-off for
energies we can observe which was first predicted by Greisen, Zatsepin, and Kuzmin
and is known as the GZK-limit [31]. This limit is visualized in Fig.@ where protons
at different energies have been simulated with CRPropa3. The rapid energy loss after
already small distances for protons over 10?° eV is the A-resonance dominating the
cross section. However in the presented simulation all known significant interactions
have been included as well as cosmological effects.

4.2.3 Deflection in Magnetic Fields

Charged cosmic rays are deflected in magnetic fields which complicates the identifi-
cation of their sources since we neither know the charges, nor exact magnetic fields
inside or outside our galaxy. Particles affected by a magnetic field are deflected with
a gyroradius of:

__r . FEle (4.6)

lg|BL  ZeB,

where B is the perpendicular component of the magnetic field. Nuclei with higher
charge are more effected since the deflection depends on the rigidity R = E/Z of the
cosmic ray [10].

To simulate the propagation of cosmic rays through a magnetic field different models
are established categorized into two types: the galactic magnetic field (GMF) and the
extra galactic magnetic field (EGMF). The most sophisticated GMF model today is
the JF'12 model [32] which describes a magnetic field following the spiral arm structure
of our Galaxy and an additional irregular field which acts as a random component.
On the left in Fig.[4.4] the mean deflection of particles is computed as a function of
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Figure 4.4: left: Mean deflection of extra galactic cosmic rays as a function of the
rigidity R = E/Z simulated with the JF12 GMF model. right: The mean traveled
distance inside our Galaxy. In both plots the blue line describ the regular field
component following the spiral structure of our galaxy and the red line with an
additional random component for a turbulent magnetic field. Both taken from [10].

the rigidity. On the right the mean traveled distance inside our Galaxy as a function
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of the rigidity is shown. Cosmic rays at the highest energies travel on straight lines
whereas smaller energies are strongly deflected which makes it difficult to reconstruct
their origin.

We know less about the EGMF than about the GMF which is modeled using radio
measurements. The only way to study EGMF fields is through magnetohydrodynamic
simulations which differ in their predictions. EGMF models vary in their prediction
[10]: e.g. the deflection expectations of a 40 EeV proton traveling over a distance of

110 Mpc are less than 1° according to Dolag et al. [33] or could could be at least 45°
according to Miniati et al. [34].
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Chapter 5

Simulation of Sky Regions with
Nearby Source Contribution

A recent Analysis investigating in UHECR sources revealed a dipolar structure and
favor an astrophysical scenario with acceleration sites situated outside our galaxy
[22]. Furthermore, other studies found an evidence for anisotropy correlation with
nearby sources which are located some Mpc away from our Galaxy [2]. In this work
we take these results as a starting point and construct a scenario with sky regions
exhibiting a nearby UHECR source. This chapter describes the setup of a model
universe containing extragalactic UHECR sources, considering cosmological effects
and simulate the UHECR propagation through the universe using CRPropa3 [27].

5.1 Source Properties

5.1.1 Source Density

The universe we are simulating is homogeneous and isotropic containing identical
UHECR sources. The source density ps is constant in a comoving volume and all
sources have the same absolute luminosity. We set up a sphere with the radius R
in which we distribute these sources uniformly. We place an observer in the center,
representing our Galaxy. Depending on the source density the mean distance to the
closest source can vary. We simulated sets of random universes with ps between
10~ Mpc™ and 10~" Mpc 2 and computed the distance to the closest source Dipyy,.
In Fig. we show the median and the 68 % quantile of D,;, for 1,000 simulation
sets of each pg value.

The closest source represents a distinguished direction: by zooming into the closest
distances of the model universe the distribution of sources is not homogeneous and
isotropic anymore. This difference between the small scale and the large scale is well
known for matter distribution in cosmology [28]. Recent results favor a significant
contribution of nearby sources within 10 Mpc (i.e. [2]) and therefore we selected a
source density of p, = 107Mpc > which fulfills this requirement(c.f. Fig.. In
Fig.[5.2 the difference between nearby region and larger distances is visualized by
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Figure 5.1: We show the distance to the closest source Dy, in an isotropic and homo-
geneous universe. We compute the median and the 68 % quantile of 1000 ralisation
for each presented source density ps.

projecting the position of uniform distributed sources on the x-y-plane for different
scales.

The idea of this approach is that the nearest source has a higher apparent luminosity
in comparison to the sources further away and thus forming a significant signal which
is the base for a later analysis. The number of sources inside a sphere shell of size
AR for an isotropic universe is:

R+AR pm 2w
N, = / / / psr?sin(0)dr df de (5.1)
R o Jo

which than tends for larger distances to
.~ pATRPAR (5.2)

This limit holds not for small scales which are dominated by random fluctuations,
as visible in Fig.[5.2] with one nearby source at 4 Mpc followed by the next sources
further away:.

5.1.2 Cosmic Ray Injection

Each simulated point source is considered to inject UHECR isotropic. The accelera-
tion mechanism is motivated on theoretical predictions and experimental constraints.
The modeled sources follow a so called ‘bottom-up’ acceleration process where stan-
dard model particles are accelerated up to a specific energy (c.f. . We assume
each source to be identical following a power law energy spectrum at the source with
a maximal rigidity dependent acceleration energy. The maximal energy is described
through a cut-off function with the shape of a broken exponential cut-off as shown
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Figure 5.2: Visualization of an isotropic and homogeneous universe which is projected
on the x-y-plane. The radial axis denotes the radius  in Mpc and the azimuth angular
is the ¢ coordinate. On the left sources up to a distance of » = 20 Mpc are displayed,
whereas on the right sources till » = 100 Mpc are shown.
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Figure 5.3: left: the cut-off function describing the maximal injected energy. right:
the injected spectrum following [5.3| using parameters specified in [5.1.2}

in Fig.[3.3] The sources inject 4 representative elements following approximately log-
arithmic mass groups 'H, “He, N and ®Fe. The spectrum has the form [3}[10}[24]:

E. N\ Ei 7] Ei 7] 1_Efnj/zfnj
J(Bii, i) = inj 79 Y. @(1_M> @<M_1). Frent
( ] J) ¢0<Eev> a( mJ) ( Rcut + Rcut e
(5.3)

where ¢, is the total flux level of the cosmic rays, Fi,; and Zi,; are the injected
energy and injected elements, respectively and Ry is the maximal rigidity. The
exact values we use to model the source energy spectrum are orientated at the best
fit values resulting from the baseline scenario of the combined fit method in ,.
We take the global minimum found in the fitting procedure in [10]. Furthermore, we
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use a slightly lighter composition.

v=20.6
loglo(Rcut/eV) = 18.5
fa=10%, fue=10%, fNn=79%, fre=1%

The injected spectrum is shown on the right in Fig.[5.3] At lower energies nitrogen
dominates the spectrum whereas due to the rigidity cut-off at higher energies iron
dominates. This is also compatible with the X,. measurements on Earth which
favors heavier elements towards higher energies [21].

5.2 Propagation Horizon

Due to attenuation effects during the propagation cosmic rays lose energy and due
to the GZK-cutoff higher energies are not able to reach the Earth from far away [4].
Using CRPropa3 we inject particles at different distances to investigate the maximal
propagation distance for different energies. We choose protons and iron at energies
of 10¥ eV and compute the distance from which we can receive energies exceeding
1018eV , 10 eV and 10! eV. Fig. shows the fraction of particles exceeding these
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Figure 5.4: Fraction of particles propagating over distance, exceeding a certain energy,
from initial *H and 56Fe.

energies defining a propagation horizon. Particles with an energy above 10%! eV loose
energy fast due to the GZK-effect (see section 4.2.2)) which is described by a very low
propagation Horizon. The propagation horizon for particles with an energy above
1018 eV exceeds 3,000 Mpc. We determine our minimum energy to 10 eV which can
originate from sources at a maximal redshift of z =~ 0.35. This choice of a lower energy
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limit is motivated by recent anisotropy studies which consider minimum cosmic ray
energy in this order of magnitude |2,22].

5.3 Cosmological Effects

We setup our model universe in a cosmological context where effects due to the
expansion of the universe are contributing. We assume a flat ACDM universe with
a Hubble constant of Hy ~ 67.3km/s/Mpc the present baryonic and dark matter
density of €2, ~ 0.315 and the dark energy density of 2, ~ 0.685. This is the same
cosmological model used for the simulation tool CRPropa3 [27] and other combined
fit method [10]. The space time of our universe is described by the Robertson Walker
metric, where we assume flat space:

ds® = —c2dt* + a(t)*[dr® + r*dQ?] (5.4)

Here t is called the cosmological proper time which is measured by an observer who
sees the universe expanding around him. The spacial coordinates r, ¢ and 0 are the
comoving coordinates which describe the position of a point in space. The scale factor
a(t) describes how a distance expands or contracts with time. Today which is denoted
as to the scale factor is set to 1. This means that the comoving distance is coinciding
with the proper distance at the present time [2§].
By observing lightll] we get information from a source that emitted a photon at a
certain cosmological time t.,,, whereas we observe the photon at a later cosmological
time t.e.. Since the Universe expands the proper distance to the source has changed
and the source was closer at the moment the photon was injected. This observation
effect is measured in redshift which is defined as:

a(trec)

1+z2= o(tom) (5.5)

The comoving distance describes the distance this source has at the time the photon
is observed, like we would measure the distance with a ruler. In fact the comoving
distance factors out the expansion of the universe since it gives us a distance which
does not change in time [35].

Cosmic rays propagate over a certain distance and interact with the photon back-
ground, therefore it is important to know the distance the cosmic ray has actually
traveled. The look-back distance, often referred as the light-travel distance, is the
time a photon took to reach the observer multiplied by the speed of light. This dis-
tance is depending on the model which describes how fast the universe is expanding
and leads to the look back distance defined as:

c [7 dz
dp(z) = Fo/o (5o 1o (5.6)

'In our analysis we are considering cosmic rays which propagate with approximately the speed
of light.
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where Hj is the Hubble constant today, {2 the mass density inside our universe and
Qx the density of dark energy E| [35]. This effect is implemented in the simulation
software CRPropa3 which also consider adiabatic energy loss of the cosmic rays due
to expansion [10].
Another important aspect is that the expansion of the universe changes also the
apparent luminosity of the source. We consider a proper surface: A, = 4nr?. A
photon emitted at a sources carries its own wavelength as a proper distance which is
¢(0tem) at the source. When the photon is detected the proper wavelength is in terms
of the metric ¢(dtye.). Due to expansion this proper distance was stretched following
the relation:

(0trec) = (Otem)(1 + 2) (5.7)

The flux is calculated as particles crossing a surface per time and therefore we have
to consider the stretched surface to calculate the flux of a distant source:

o L
C Aar2(1 + 2)?

where L is the absolute luminosity of a source, and the luminosity distance is defined
as: dr = r(1 + z). This aspect is crucial in cosmology as on large scales the flux
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Figure 5.5: left: The comoving, luminosity and look-back distance is shown as func-
tion of the redshift. right: The flux contribution from different distances originating
from a homogeneous source distribution in a static universe and in an expanding
universe.

rapidly drops and the distance to a standard candle would be overestimated by the
factor(1 + z) [28].

The behavior of the three different cosmological distances we introduced here are
shown on the left in Fig.[5.5] On the right the flux contribution per distance interval
is computed for the case of a static universe and for the case of an expanding universe
described by the ACDM model. In the continuous limit the distribution of the source
contribution originating from different distances is described by a uniform distribution
U(d) whereas for the ACDM model is described by U(d)/(1 + z)®. This effect is
considered in the present work to describe the relation between flux and distance in
a realistic manner.

2The radiation density and the curvature was neglected since we assume a flat ACDM universe.
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5.4 One-Dimensional Model of Sky Region

Considering all effects and constraints discussed above we are able to setup a Monte
Carlo simulation of sky region with nearby sources. We construct a universe con-
taining identical sources with a source density of p; = 10~3Mpc . We place our
galaxy in the center as an observer and consider sources up to a redshift of z = 0.35
which corresponds to a comoving distance of d. = 1425 Mpc. We select 3 sky regions
around the direction of the 3 closest sources with an radius of & = 0.3rad. The radius
is orientated by recent works investigating nearby sources using a search radius to
mimic deflections of cosmic rays in magnetic fields [2]. With the setup of a search

2.0 11.6 21.2 30.8 40.4
D[Mpc]

Figure 5.6: Visualization of the source positions with their distance represented in
the circle size and color code. The three closest sources are highlighted by gray circles
and the ROIs are displayed with red circles.

radius around a nearby source we would also record the flux from contributors further
away but a significant fraction would originate from the nearby source. One scenario
is visualized in Fig.|[5.6| where the nearest sources are highlighted and the region of
interest (ROI) are marked by red circles.

To study characteristics of the nearby source in the on-target sets we construct sets
without a nearby source for comparison. We set up a off-target set which is the part
of the sky outside the ROIs. Since we selected already the 3 closest sources in the
simulated universe the closest source in the off-target remains further away. This is
shown in Fig.[5.7] where we counted the closest source for all 3 ROI and outside the
ROI for 1,000 scenarios. It is visible that the mean distance of the ROI with the
closest source is a few mega parsec closer than the nearest source outside the ROI.
To simulate the cosmic ray flux of all sources on Earth, we have to calculate the
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Figure 5.7: Distance of the nearest Source in the three ROIs and outside the ROIs
for 1,000 Monte Carlo sets.
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Figure 5.8: top histogram of source distance using a logarithmic binning. bottom
the flux contribution of each distance bin normed to 1. On the left row we show a
on-target set, whereas on the right a off-target set.

relative flux which each source is contributing. Therefore, all sources inside the se-
lected ROI contribute with their individual fraction to the analyzed set of cosmic
rays, where only the distance information is left. We choose a logarithmic binning
for the source distances and calculate the flux for each distance according to the
luminosity distance as explained in Each calculated flux is multiplied by the

34



number of counted source inside the according distance bin. The number of sources
filled into distance bins and the contributing flux of each distance bin is shown for
one example scenario in Fig.. Since the flux decreases according to 1/r* nearby
sources have a larger contribution than sources from further away. Note that the
increasing flux for larger distances is due to the increasing bin size, which means that
at higher distances more sources are counted in one bin. The contribution in Fig.[5.8
are already normed to 1 to calculate the relative contribution from each distance. In
the displayed example the first 3 sources are at 2.99, 4.74 and 5.97 Mpc contributing
with a combined source fraction of ~ 27 %.

The next step is to inject a spectrum described in [5.3] with the parameters [5.1.2]
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Figure 5.9: We present the injected spectrum on the left and the simulated spectrum
on Earth on the right for the on-target set and the off-target set. For both sets
we injected 2,000 particles.

according to the flux for each distance bin. In total we inject 2,000 particles for each
set where the on-target set is described by the sum of the 3 ROI and the off-target
set corresponds to the region outside the ROI. We simulate 1,000 on-target sets and
1,000 off-target sets.

We simulate the propagation with CRPropas3, described in detail in section [£.2] The

log1o(E/eV)=19.1-19.2 4 log1o(E/eV)=19.3 - 19.4 log1o(E/eV)=19.5 - 19.6 Fe logio(E/eV)=19.7 - 20.2
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Figure 5.10: X.x distribution for different energy bins, drawn from the Gumbel
distribution (see equation fitted to the interaction model EPOS-LHC (see section
. The X,,.x observable is presented additional for different mass groups.

Simulation returns the cosmic ray energy and exact composition which reaches the
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earth. In Fig.[5.9 we present the injected and the measured energy spectrum for one
on-target set and one off-target set.

To mimic measurements of the atmospheric depth at the Pierre Auger Observatory,
we draw Xy,.x values from the Gumbel distribution (see equation . The X hax
observable for different energy bins is presented in Fig.[5.10] for one on-target set.
Finally, we simulated scenarios of Sky regions with and without a nearby sources.
The resulting simulations are saved as an energy spectrum and X,,,, measurement
like the observable of the Pierre Auger Observatory. These simulation sets will be
investigated by an analysis explained in the next chapter.
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Chapter 6

Analysis Method

In the previous chapter we described the construction of a Monte Carlo universe
with a homogeneous distributed UHECR source population generating an energy
and atmospheric depth measurement on Earth. In this chapter we describe a simple
astrophysical model consisting of a homogeneous source background and a nearby
point source. We then introduce a statistical evaluation method resolving a nearby
source by their typical energy and shower depth signature.

6.1 Fit Model

We model the cosmic ray flux with CRPropa3 on Earth assuming a simple astrophysi-
cal scenario: We simulate homogeneous distributed UHECR sources in one dimension
between a minimum distance of d;, = 2 Mpc and a maximum distance d,., corre-
sponding to the redshift z,,x = 0.35. In the case of homogeneous distributed sources,
the distance where cosmic rays are injected is drawn from a Uniform distribution mul-
tiplied by (1 + 2)™2 to compensate expansion effects, as described in . In addition
we simulate a point source at the distance d, between 1 and 100 Mpc which describes
a nearby source. The flux on Earth is measured in counts of cosmic rays and there-
fore we can simulate the two source scenarios separately and add the fluxes afterwords.

6.1.1 Source Model

The source model is described by the same acceleration mechanism like it was used
to create the Monte Carlo truth in and in the fit model of [3,/10,24]: We
assume UHECR accelerators described by power law energy spectrum, injecting 4
representative elements 'H, *He, N and *’Fe with a maximal rigidity dependent
acceleration energy. In the following we will describe a fast simulation technique to
model a cosmic ray flux prediction on Earth for different source parameters.
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6.1.2 Cosmic Ray Flux Simulation

The propagation through the universe is simulated using CRPropa3. The cosmic
ray flux is modified during propagation in a non trivial way (see section and
the simulations with high statistics are computational expensive. Therefore we only
simulate the cosmic ray flux once with a flat spectrum and make use of a re-weighting
technique to modify the cosmic ray flux.

We inject a spectrum following J(Eiy;j) o Ei;jl with a minimum energy of 101 eV and a
maximal energy of Z,x 1025 eV. We simulate this spectrum for a homogeneous source
distribution and for a point source at different distances. For each simulation we inject
the four representative elements introduced above with 4,000, 000 particles, each, to
guarantee a statistical stability. The point source is simulated in 40 logarithmic steps
between 1Mpc and 100 Mpc.

The propagation simulation with CRPropa3 returns the flux and composition on
Earth. To mimic the measurements from the Pierre Auger Observatory we sample the
Xinax observable from the Gumbel distribution assuming the EPOS-LHC interaction
model (see section [2.1]). To have an accessible simulation we bin the simulated cosmic
rays before and after the simulation: At the source we use a binning with a bin width
of log,(Einj/eV) = 0.025 to avoid binning effects after re-weighting. On Earth we use
an energy bin width of log,o(Eae/eV) = 0.1 and 20g/cm® for the Xp., observable
which is similar to the detector resolution [10]. For the simulated point source we
add one dimension to the histogram for the different distances. We finally construct
the histogram for the homogeneous distributed sources as:

NH - NH(Ziinj?EiinjﬂEgeUXi’lax) (61)
and for the point sources as:
NP = Np(dm’Ziinj7Eiinj7E§et7X1lnax) (62)

The upper index denotes the corresponding bin. In the next step we introduce a
re-weighting technique to model the injected spectrum and compute the predicted
cosmic ray flux on Earth.

6.1.3 Event Weighting

The model we are creating has two components: The flux injected by homogeneous
distributed UHECR sources and a single point source. The predicted number of events
on Earth depends on the source parameters 7, Reut, a(Zinj) and the distance dp in case
of the point source. The re-weighting technique is orientated at the fast simulation
procedure used in [10,30]. We can write the predicted number of cosmic rays events
using the simulated histograms for the homogeneous source distribution:

MH(Ecl?e‘m Xrlnax) = Z Z w(‘E'iinj’ lenj) NH(Ziinj’ Efny Ecllge‘m Xllnax) (63)
g
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and using [6.2] for the point source at a distance dp:

M (Ede‘m max ZZZ an’ an fd15t<dP) Np<dm lenyEl]nJ’Eget’Xl{nax)
(6.4)
where
Ei N\ 7 Ei. /7 1 Fing 2
El ’Z‘] — 1n_] Z] @(1 ln_] lHJ) @( an lIlJ 1) . Rcut ’
wlB Z) = (52) i) (0(1-=2 ) o ().
(6.5)
and d, —d dp —d
weldp) = ———L §m L bam, 6.6
faist (dp) d+_d7d,d,+d — g Odmd (6.6)

dp denotes the position of the point source, ¢ is the Kronecka Delta, d, is the next
greater and d_ the next smaller simulated discrete distance in the histogram Np.
Note that we added 1 to the spectral index of the re-weight function to account for
the index of the pre-simulated energy spectrum.
The two histograms My and Mp are re-weighted individually and combined after-
wards. According to the distance of the nearby sources in the Monte Carlo universe
the total flux fraction of the nearby sources varies. This is modeled by introducing
the source fraction f; to the superposition:

MtOtal(EéCew Xrlnax) (1 - fS) ' MH(E§6t7 Xrlnax) + fS ' MP<E§et’ Xl{nax) (67)
This is the predicted cosmic ray flux measured on Earth which is shown exemplary in
Fig.[6.1] for different source parameters which are inspired by results of the combined
fit method in [10] and an arbitrary chosen nearby source distance and source fraction.

6.2 Statistical Evaluation Method

The aim of the present analysis is to estimate the free parameter of the fit model for
the Monte Carlo sets developed in chapter [)] Bayesian statistics provides a frame to
evaluate a probability model given a data set, or in our case a Monte Carlo truth,
under the assumption of a certain degree of belief. This degree of belief can be based
on prior knowledge such as previous experiments or theoretical assumption [36]. In
the following we explain how we can evaluate in a Bayesian context the created Monte
Carlo truth with the model above.

6.2.1 Bayesian Inference

Bayesian inference is a method to infer a parameter 6 assuming a certain model
H in terms of a probability. The probability of a certain set of model parameters
is conditional to the observation denoted as ‘data’ and is written as P(f|data, H).
This makes a probability statement about 6 for a given set of data and is called the
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Figure 6.1: We show the injected (top row) and the expected energy spectrum on
Earth (bottom row) for three different source scenarios.

posterior density. Bayes’ theorem describes how this posterior probability depends
on the measured data and the stated model H:

P(0) x P(datald, H)

P(f|data, H) = P(datal )

(6.8)

The prior distribution P(f) := m(f) expresses our state of knowledge about the
parameter set 6 before we have analyzed the data. P(datalf, H) is the conditional
probability of observing the data under a particular choice of parameters 6. This
is also called the likelihood L£(0) =: P(data|f, H). In the denominator we have the
Bayesian evidence P(data|H) = [ P(0|H)P(data|d, H)d# which is the distribution
of the observed data marginalized over the assumed parameters and is therefore also
called the marginalized likelihood [37]. This distribution is not depending on 6 and
can be disregarded for fitting the model parameter to the data. Therefore we can
write the posterior distribution as:

P(0)data, H) o 7(0) x L(6) (6.9)

This provides a probability, measured for the specific parameters, in the given light
of the data [36].

Bayesian inference is the basis to fit a model to a given set of data providing a
probability distribution on the parameters of the model [37]. Once we get the poste-
rior distribution we can conclude on the parameter: The maximum of the posterior
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distribution is the most probable value working as a point estimator

0 = argmax P(6|data, H) (6.10)
o

This point in the parameter space is not necessary a representative value and more
often the posterior mean is taken:

(0) = /OP(H\data, H)do (6.11)

which indicates the average value of the estimated parameter 6 [10].
In the following we formulate the likelihood function for the cosmic ray energy E and
the shower depth X, .x.

6.2.2 Likelihood

The likelihood function for a combined fit method evaluates both, the measured
energy spectrum and X, value.

For the energy measurement the number of events in a specific energy bin is described
by a counting experiment. This is described by the Poisson distribution and therefore
the likelihood of the spectrum reads:

Lopee =[] Q)™ s (6.12)
spec k?e!
where )\, is the expected number of counts and k. is the number of measured cosmic
rays in the respective energy bin e [10].

The events in one energy bin are further specified according to the X,,,, observable.
Therefore, ke are the measured cosmic rays in the energy bin e and the X, bin x
and pey is the probability to find a cosmic ray in this bin. Thus, the total number
in one energy bin ne = ) ke is also a measurement for the cosmic ray flux. This
information is already contained in the likelihood function of the spectra and there-
fore the number of events in one energy bin is constant for the X,., observable. The
distribution in X ., bins with a fixed total number of events is described by a multi-
nomial distribution and therefore the likelihood according to the X,,., observable is
the product of all multinomial distribution describing an energy bin:

L= Lxpae = [[7! ] kl !(pem)kevx (6.13)

Since the energy E and the shower depth X,.. are two independent observable the
total likelihood is provided by the product [10]:

L = Lopec X Lxpmax (6.14)

For computational reasons it is often easier to calculate with sums instead of products
and therefore it can be an advantage to compute the logarithm if the likelihood
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function. Since the logarithm is a monotone function the proportionality sign in
equation remains valid |38]. In our case the logarithm of the likelihood function
is also an advantage since too large numbers can cause a bin-overflow in sampling
algorithms. The logarithmic likelihood for the spectrum reads:

10g(Lspec) = ¥ _ kelog(Ae) — log(ke! ) — Ac (6.15)

and for the X,,,« observable:

108(Lx,0,) = ¥ ke —log(ke! ) + > ~10g(kex!) + kesxlog(pe,) (6.16)

and for the combined likelihood:

log(Lspect Xmax) = Z kelog(Ae) — Ae + Z —log(kex!) + ke xlog(pex) (6.17)

6.3 Fitting Technique

The likelihood function provides a tool that evaluates a certain model in the light of
the Monte Carlo truth. As described in the we have 8 free parameters in our fit
model and we do not have any a prior knowledge about the behavior of the likelihood.
A brute forth approach which scans the parameter space to find the maximum of the
likelihood, according to [6.10, would be computational intensive and unfeasible with
a reasonable fine parameter step size. At this point Bayesian statistics provides
possibilities to explore the parameter space using the likelihood function.

6.3.1 Markov Chain Monte Carlo

In general a Markov Chain is a sequence of possible events. The transition from one
event to another is only depending on the probability of the event attained in the
previous one [39]. A Markov Chain Monte Carlo (MCMC) is working by random
sampling using a Markov chain for the transition probability. If the likelihood of the
Markov Chain would be isotropic, thus all the transition probabilities would be equal,
the MCMC would describe a uniform random walk. The trick of using the MCMC
method is to construct a Markov Chain with transition probabilities following a target
distribution which is in our case the posterior distribution. For large number of sample
steps the MCMC would then converge to the target distribution [36].

When we sample from a posterior distribution we are only interested in regions of the
parameter space with a high probability density.

6.3.2 Metropolis Hastings Algorithm

In 1953 Metropolis developed an algorithm to sample efficiently from the posterior
distribution [40] which was later generalized from Hastings in 1970 [41] and is known
today as the Metropolis-Hastings Algorithm.
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The Metropolis-Hastings Algorithm is an iterative procedure which accepts or rejects
proposed random steps in the parameter space. P(f|data) is the posterior distribution
we want to sample from and J;(6*|0'"!) is the proposal distribution from which we
sample each step. We sample a proposal point in the parameter space #* at a time
t. It is not clear which proposal distribution should be used in general and therefore
a normal distribution is used by default. In the first sampling algorithm from 1953
Ji has to be a symmetric distribution at any time which is in the final Metropolis-
Hastings algorithm not the case any more.

The algorithm is described by the following steps:

1. We start at a point §° for which P(6°|data) > 0
2. We sample a proposal step 8* from the proposal distribution J;(6*|6'1)
3. calculate the ratio

_ P(0*|data)/J,(6*]60"")
"7 P(0"|data) /7, (616"

4. Now we generate a uniform random number u,; € [0, 1]
5. We accept or reject the proposed step following:

if u; < r we set 6t = 9*

otherwise we reject the proposal and set 6! = =1
6. return to 2. till the number of sampling steps is reached.

The sequence of iteration 6%, 6% ... converges to the target distribution P(f|data) as
proven in detail in [37]. The number of iterations needed to effectively estimate
the target distribution depends on the complexity of the model and its number of
parameters [306].

6.3.3 Prior Distribution

The prior distributions comprises the knowledge we have before looking into the data
or expresses a degree of belief. Therefore we summarize all information we have
into the priors, e.g. we constrain the distance parameter to only positive distances.
All our constraints are summarized in Table[6.I] We orientate the allowed range
of parameters on the choice made in [10]. In particular we set v € [—3,3] that
our analysis is able to fit sources following Fermi acceleration or even more exotic
acceleration mechanism where the source emissivity increase towards higher energies.
The constraints to the R, parameter is orientated to the simulation range chosen in
where we set the minimum cut-off rigidity to Ry = 17.5eV and the maximum
to Rewt = 20.5eV to be able to model a smooth cot-off shape with the pre-simulated
spectrum as described in [6.1.3] We choose the nearby source distance to be between
1 and 100 Mpc which describes the region where we would expect a nearby source
and a transition range to distances where the source would be indistinguishable from
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Source parameter Prior distribution

Spectral index 7(y) = Uniform(-3, 3)

Maximum rigidity 7(logo(Reut/€V)) = Uniform(17.5, 20.5)
Nearby source distance | 7(dp/Mpc) = Uniform(1, 100)

Source fraction m(Fs) = Uniform(0, 1)

Elemental fraction 7(a(Zinj)) = Unit simplex

Table 6.1: Overview of the parameter for the fit model introduced in 6.1} All con-
strains are summarized in the chosen prior distribution.

the background. The source fraction f; can vary between 0 and 1 whereas f; = 0
corresponds to the isotropic hypothesis and f; = 1 would be only single point source.
Since we do not have further information about the parameters we describe them by
a uniform distribution.

The elemental fraction is the only parameter which has an additional constrain. We
inject 4 elements each with a certain fraction a;, @ € 1,2,3,4 which has to sum
up to one: ) .a; = 1. Since we have no further constrains and leave all possible
combinations equal, the set of element fraction is described by a unit simplex. We
construct a unit simplex by drawing 3 random variables between 0 and 1 and sort
them:

1 < Zp < X3 (6.18)

We now select the elemental fraction as follows:

a; = T
Qg = T2 — I
as = T3 — T2

CL4:1—$3

This sums up to 1 and provides a uniform distribution on a 4 dimensional simplex as
proven in [42].

6.3.4 Sampled Posterior Distribution and Convergence Check

We described how we construct a model of an astrophysical scenario and formulate
the likelihood function to evaluate a Monte Carlo truth. Furthermore we introduced
the Metropolis-Hastings algorithm to sample from the posterior distribution. Before
we can fit and evaluate the created Monte Carlo truth, we need to know how many
sampling steps are necessary to efficiently estimate the posterior distribution and how
we know if the sampling converged.

A convergence check for MCMC sampling is provided by the Gelman-Rubin diagnostic
[43]: We sample from the posterior distribution in 10 independent runs, each starting
at a random point in the parameter space. The diagnostic combines the variances
of each trace and between all traces and formulates a convergence limit expressed in
the Gelman-Rubin coefficient R. A detailed calculation of the coefficient is given in
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the appendix . The diagnostic indicates a convergence if R tends to 1 for each
parameter. We require a value of R < 1.05 which represents a convergence within
5% uncertainty [43,44].

In this work we use the software package PyMC, version 3.6 [45], which provides
beside several MCMC algorithms the Metropolis-Hastings Algorithm, used in this
work. To visualize the sampling procedure we show in Fig.[6.2] the distance as an
example parameter of our fit model and the corresponding likelihood value of each
sample step. We performed 10 independent runs of sampling and displayed all in
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Figure 6.2: left: Exemplary the distance parameter of the fit model and right the log-
likelihood value for ten independent runs. After a burn in phase the Markov Chain
stays in a region of high posterior probability.

Fig.|6.2 The sample algorithm started at random points in the parameter space and
converges fast into the region with the higher probability where the Markov Chain
reached a stationary behavior. The First phase of the sampling procedure is the
burn-in phase where the Markov chain has not found the region with the highest
probability. These samples are discarded afterwards and the rest, which is called
the draw phase is used to approximate the posterior distribution. The number of
steps needed for both phases can vary for different problems and has to be set by
hand [44]. For our Model we use 100, 000 samples for the burn-in phase to make sure
that the Markov Chain reached a stable point and 100, 000 samples to draw from the
posterior distribution. This was done in 10 independent chains which are combined
for an analysis presented in the next chapter.

45



46



Chapter 7

Evaluation of combined Fit in Sky
Regions

In this work we constructed simulated universes with homogeneous distributed UHECR
sources and selected sky regions with and without nearby UHECR sources. Thus the
sky regions contain typical energy and shower depth pattern that we try to resolve.
We developed a fit model describing a homogeneous UHECR source distribution with
a nearby source to predict the source properties encoded in 7 parameters. Further-
more, we use a statistical fitting procedure based on Markov Chain Monte Carlo
method to evaluate the fit model on the constructed Monte Carlo (MC) sets. In
this Chapter we will present the results of the combined fit and discuss a physical
interpretation.

7.1 Combined Fit

The fit model (in detail described in section has 7 free source parameters: the
spectral index v, the cutoff rigidity R.., the distance of the nearby source dp, its
source fraction fs and the 4 elemental fractions a(Zy), described in 3 fit parameters.
We sample from the Posterior distribution P(0|MC') using the Metropolis-Hastings
Algorithm (detailed in section exemplary for one specific on-target and one off-
target set. The on-target set contains the closest source at 2.99 Mpc with a source
fraction of 27 % whereas the off-target set has the closest source at 9.46 Mpc with
an according source fraction of 0.4 %. This are representative values for the source
distances of our simulated sets, as can be seen in Fig.[5.7]

Using the combined fit method we sample 100, 000 steps in 10 individual chains from
the posterior distribution in 7 parameters from which we can infer the most probable
value and the posterior mean as described in section [6.2] In Table we present the
fitted parameter values for the on-target and the off-target set. Some of the best fit
values differ from the injected parameters specified in equation [5.1.2] and the posterior
mean indicates a broad distribution in some parameters.

We already see from the best fit value and the posterior mean, that the injected max-
imal cutoff rigidity of log,,(Reut/eV) = 18.5 is found by the fitting procedure. The
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On-target set Off-target set MC

Parameter Best fit | Posterior mean | Best fit | Posterior mean | True value

0 0yt o 7 0y +o Onic
v —0.19 0.55 £ 0.69 0.57 0.65 £0.18 0.6
log;o(Reut/eV) | 18.34 18.47 +£0.14 18.42 18.45 4+ 0.04 18.5
dp[Mpc] 3.1 3.0+1.0 70.8 79.1 £19.0 3.0/9.5
fs 0.32 0.54 +0.21 0.04 0.04 £0.03 0.27/0.004
H[%)] 47.3 21.3£17.8 44.2 23.8 £17.1 10
He[%] 13.1 23.6 £16.3 28.7 30.9 £13.7 10
N[%)] 39.5 54.2 £ 20.3 26.8 44.5 +14.0 79
Fel%] 0.1 0.8+0.8 0.3 0.6 +0.3 1

Table 7.1: Results for the parameters of the fit model for one on-target set and one
off-target set: the best fit value § and the posterior mean () + o with the region of
the highest posterior density. The posterior distributions are visualized in Fig.[7.3],
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spectral index  which is initially set to 0.6 for the Monte Carlo sets is reconstructed
for the off-target set quiet well with ¢ = 0.57, whereas the fit for the on-target set
finds a best fit value at v,, = —0.19. Furthermore predicts the fit a significant nearby
source for the on-target set whereas the off-target set favors a distant point source
with a low signal fraction. In the latter case the point source would be indistinguish-
able from the homogeneous background. In both Monte Carlo sets the fit fluctuates
in the mass composition despite the iron fraction which is in both cases smaller than
1 %.

In Fig.[7.1] we present the observed energy spectrum of the Monte Carlo sets and

10-16 10-16
10-17 10-17
—10-18] 107184
S S
5, 5,
E 10-194 E-L; 10-19
107204 10-20
10-21 10-21

19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4
log1o(E/eV)

19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4
log10(E/eV)

Figure 7.1: The energy spectrum of the Monte Carlo sets with the Poisson uncer-
tainties and the prediction of the fit model for the best fit values which are given in
Table [7.1} For better comparison, the model prediction and the Monte Carlo set are
further specified in 4 mass groups. On the left we show the results for the on-target
set and on the right for the off-target set.
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Figure 7.2: The X,,.x distribution of the on-target set for the indicated energy bins.
The fit model prediction for the best fit values from Table are shown separated
in 4 mass groups.

the predicted flux from the fit model for the best fit value. We also show the pre-
dicted Xy observable as presented in Fig.[7.2 for the signal, and the predicted X yax
observable for the off-target set can be found in the appendix [B.I The predicted
observables match the Monte Carlo sets. In both cases we observe a composition
dominated by a mass group between A = 8 and A = 28 up to an energy of 10 eV
for the on-target set and 10'%¢ eV for the off-target set. After this threshold the mass
composition is represented by higher masses A > 29 which can only originate from in-
jected iron. Masses of A < 8 are in both sets under abundant which is due to the low
rigidity cut at the source and the fact that secondary particles from particle decays
are under the energy threshold of 10! eV. We also observe a steeper energy spectrum
for the off-target set and higher absolute energies in the on-target sets. This could
be an effect of an significant contribution from the nearby source, since on smaller
distances cosmic rays lose less energy during propagation.

7.1.1 Posterior Distributions

To gain more information from the posterior distribution we visualize it for the differ-
ent parameters. Therefore we bin the sampled parameter values in 50 bins with a bin
size according to their spread. We use a linear binning adapted to the range of the
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parameters 7y, Rey, dp and fy, whereas for the elemental fractions a(Zy) we used a
fixed logarithmic binning between 0 and 100 %. We show the marginalized Posterior
distributions for v, Ry, dp and fs in Fig.[7.3] for the case of the on-target set pre-
sented above. We additionally present 2 dimensional histograms of two parameters to
identify correlations. We compute the true parameter values from the Monte Carlo
set and the best fit value 6.

In Fig.[7.3]a broad distribution for the v parameter is visible showing a double-peak
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Figure 7.3: The marginalized posterior distribution for the parameters v, R.., dp
and f; for one on-target set presented in Table We show the one dimensional
histogram for each parameter in the top row and display the best fit value 0 and the
true parameter value injected in the Monte Carlo set. We also show pair-wise joint
distribution to visualize correlations among the parameters.

structure indicating a second region of high posterior probability. This feature is also
visible in the one dimensional histogram of R.,. Furthermore, we observe a strong
correlation between v and R, which was already described by previous combined
fit methods as a general feature of this method (see section . Additionally, we
can conclude that the distance parameter shows a high posterior density for nearby
sources and the source fraction f; favors a significant contribution. We also observe
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a correlation between f; and ~ which can be interpreted that a strong nearby source
can compensate a steeper spectrum caused by attenuation effects during propagation.
The marginalized posterior distribution for the off-target set, we presented above,
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Figure 7.4: The marginalized posterior distribution as described in Fig. for the
case of the isotropic set.

is shown in Fig.[7.4 In comparison to the presented on-target set we observe in this
case a smoother marginalized posterior distribution for the v and R, parameters
with no double peak structures. But also for this set we see a strong correlation be-
tween these two parameters. In contrast to the on-target set the distance parameter
in combination with the source fraction clearly disfavors a nearby source with a sig-
nificant contribution. This is manifested in a low source fraction and a wide spread of
sampled distances favoring distances above 50 Mpc which can be neglected according
to the homogeneous source distribution. The off-target set is well described by the fit
model since the combined fit found the source parameters correctly in contrast to the
on-target set where marginalized posterior distribution shows an ambiguous struc-
ture. Nevertheless is the gain of this result that the combined fit method developed
in this work is capable to find a nearby source correctly.

The marginalized posterior distribution and the according correlation maps for the
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He[%]

Figure 7.5: We show the marginalized posterior distribution of the on-target set for
the mass fraction (for all parameter results see Table . In the top row we show
the one dimensional histograms for each element fraction with the best fit value 6 and
the true value injected in the Monte Carlo simulation. We also show the pair-wise
joint distributions to visualize correlations among the different fractions.

mass composition is shown for the on-target set in Fig.[7.5 and for the null hypothesis
in the appendix The marginalized posterior distributions for the elemental frac-
tion is similar for the off-target set and the on-target set. In both cases we observe a
broad posterior distribution for *H, 2He and "N with the highest fraction of the latter.
The fraction of iron at the source is always small, favoring a contribution around 1 %.

In Fig.[7.6] we show the correlation maps for the on-target set between the sampled
distance and the elemental fraction to investigate for correlation between these two
variables. It turns out that there is no visible correlation also for the off-target set
as shown in the appendix [B.I] This is quiet unexpected since heavier elements decay
during propagation and therefore a correlation is expected. The absence of a visible
dependency can be explained for the small sampled distance range for the on-target
set where these effects are not significant. In the case of the off-target set the poste-
rior distribution is sampled for a source fraction around 0 which makes the distance
parameter redundant and no correlation with the mass composition would be visible.
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Figure 7.6: We show pair-wise joint distributions between the point source distance dp
and the elemental fractions of the on-target set to visualize correlations. Additional
marginalized posterior distributions are shown in Fig.[7.3]and For the case of the
off-target set we show this posterior distribution in

7.1.2 Likelihood Scan

In the previous paragraph the marginalized posterior distributions revealed already
information about correlation between fit parameters. We now want to gain more
information about the behavior of the likelihood function by scanning different pa-
rameters for the best fit value. With this approach we can also visualize dependencies
in the parameter space which are not considered by a Markov Chain Monte Carlo if
the posterior density is too low. Therefore we take fixed values for two parameters
and fit the remaining 5 free parameter of the fit model. We maximize the likelihood
value with the basin-hopping approach which finds a global maximunﬂ using iterat-
ifly random perturbations of an local maximisation algorithm [46]. This algorithm
is implemented in the python package SciPy which is an open source software for
mathematics, science, and engineering .
According to Wilks theorem a nested model with a high number of samples approaches
a chi-squared distribution . Thus we can use the n, = /L. — L as a pseudo
standard deviation to estimate the topology of the two scanned parameters. Here
Lnax is the maximal likelihood value found by the scan and L the best fit value found
at each scanning point.

In Fig@ we present the likelihood scan for the v and R, parameters for the on-
target set, where we observe a global minimum at v = —0.19 and R, = 18.34 as we
found with the combined fit for all 7 parameters. Further more we see a valley like

I'Note that in our case we are searching a maximum in the likelihood space, whereas in the
literature, refering to an optimization problem, the term ‘minimization’ is commom. The likelihood
is often computed as a deviance which describes a likelihood ratio and turns the maximum-likelihood-
method into a minimisation probme.
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Figure 7.7: Scan of the likelihood function in the (7, Ry )-plane. The color code
denotes the pseudo standard deviance n, = v/ Lya.x — L with respect to the optimal
fit value which is denoted by an white cross. The optimum is found at v = —0.19
and R., = 18.34. A second local minimum is situated at v = 1.47 and R, = 18.65.

structure which was reported in ,, as a feature of the combined fit and is the
same correlation we observed with the marginalized posterior distribution in Fig[7.3]
We present the same likelihood scan for the off-target set in the appendix

We also scan the point source distance dp and its total fraction f; which is presented
in Fig.[7.§ for the on-target and off-target set. This scan revealed topological features
explaining the behavior of the Markov Chain Monte Carlo in The scan of the
on-target set describes the region for a nearby sources and a significant flux contribu-
tion by a high likelihood value. The scan finds the global minimum at dp = 3 Mpc and
a source fraction of f; = 0.32 which coincides with the results of the Markov Chain
Monte Carlo method. Furthermore a distant source beyond 10 Mpc or a too small
source fraction is disfavored. For the off-target set the topology of the likelihood space
is the opposite as for the on-target set: The region for a strong contributing nearby
source is disfavored and a source fraction approaching 0 is preferred or the point
source situated at large distances. The global minimum is situated at dp = 71 Mpc
and f; = 0.16 which is in the region of the best fit value found with the combined fit
above.

7.2 Distance Scan

By scanning the distance parameter, we want to statistically resolve a point source
and give an estimation of the expected sensitivity of this method.
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Figure 7.8: We show the same scan setup as for Fig.[7.7] for the fit model parameters
dp and fs. In the top we show the likelihood scan for the on-target set and for the

off-target set in the bottom

7.2.1 Likelihood Ratio

By fixing the point source at different distances we want to know how much better
the fitted distance is in comparison to an null hypothesis. Therefore we formulate the
null hypothesis as the best fit value for a fit model without a nearby source. This is
accomplished by setting fs = 0. We compute the likelihood ratio:

sz'log(L(std: 0)) (7.1)

In Fig.[7.9] we show the median likelihood ratio and the 68 % quantile for 1000 on-
target sets and 1000 off-target sets. We see a clear separation for distances up to
10 Mpc. In this range the on-target set has a significant higher likelihood ratio than
the off-target sets since the nearby source is better described by a fit model considering
a nearby source component. For larger distances we observe that the off-target sets
can be better described with a point source than with the null hypothesis. In this
range the likelihood ratio drops for the on-target sets and approaches the case of an
isotropic fit model.
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Figure 7.9: We show the likelihood ratio Q for the best fit value for different distances
of the point source specified in the fit model We compute the median and the
68 % quantile for 1000 on-target sets and 1000 off-target sets.

7.2.2 Expected Sensitivity

We have seen that the combined fit method developed in this work is in principle
able to distinguish between on-target and off-target sets. To quantify this method for
an investigation on sky regions we have to assess the statistical stability. Therefore
we compute the best fit value from the distance scan and fill its likelihood ratio Q
into a histogram for the on-target and off-target sets. These two distributions are
shown on the right in Fig.[7.10] We also compute the median of Q for the on-target
sets and count the sets of off-target sets which lay above this value. It turns out
that from 1000 sets exactly 1 set lays above this value which leads us to p-value
of P(Qiso > medianggn,) = 0.001. On the left in Fig. we show the distance
distribution of the best fit value. For the on-target sets closer regions are preferred,
whereas the distribution tends to distant positions for off-target sets.

The distribution of the likelihood value for off-target sets fluctuates at higher ratios
due to its low statistic thus our calculation of the p-value is not precise. Therefore
we fit an exponential function to the tail of the distribution to estimate the integral
laying above the median of the on-target set as shown in on the left in Fig.[7.11]
This approach provides a conservative p-value estimation of P(Qis > medianggnar) =
0.002.

We finally estimate the range where we would expect p-values if the nature follows
our model. Therefore we compute beside the median also the 68 % quantile and
calculate the p-value for this range using the fitted estimation which is shown in
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Figure 7.10: left: Distribution of distances of the best fit value for 1000 signal and
1000 off-target sets. right: Distribution of the likelihood ratio for the signal and
the off-target sets. we also display the median of the on-target sets to calculate the
p-value for an hypothesis test.
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Figure 7.11: left: Likelihood ratio distribution for the off-target sets and the median
for the on-target sets. To estimate the p-value we fitted an exponential function to
the last bins. right: We show the likelihood ratio distribution for 1000 on-target sets
and the median together with the 68 % quantile to calculate the expected sensitivity.

Fig. Therefore we get for the lower limit of the 68 % quantile a p-value of 0.137
and for the upper limit a p-value of 5.3 x 10~® for the upper limit. We have to note
that these values are based on an approximation. In the case of an investigation on
data we would have to generate more off-target sets for a precise p-value estimation.

7.3 Discussion

In this chapter we presented the performance of the nearby source detection using a
combined fit. We have shown that the fit is able to resolve a nearby point source in
individual cases. We showed with a likelihood scan that the combined fit method is
capable to reproduce features which have been observed in previous works, i.e. [3}10].
Furthermore, we performed a scan in the distance variable and the source fraction
which reveals topological properties distinguishing between Monte Carlo sets with
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and without a nearby source.

To investigate the statistical stability of resolving a point source we scanned the dis-
tance parameter for 1000 on-target and 1000 off-target sets and computing the like-
lihood ratio as an information of how much better the model with the point source
describes the Monte Carlo set in comparison to the null hypothesis of no point source.
It turns out that the method predicts an expected sensitivity of the p-value to discard
the off-target case between 0.137 and 5.3 x 10~ with a median of 0.002. This p-values
are calculated by fitting an exponential function to the tail of the background distri-
bution, which is necessary due to low statistics.

Summarizing, we developed a promising method to investigate nearby source dis-
tances for sky regions using the energy and shower depth pattern which is an alter-
native approach to investigation only considering arrival directions of UHECR.
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Chapter 8

Conclusion

One of the central unsolved questions in the field of astroparticle physics is the origin
of ultra-high energy cosmic rays (UHECRs) observed on Earth. Recent studies at the
Pierre Auger Observatory favor an astrophysical scenario with sources of UHECRs
situated outside our Galaxy [22]. Another analysis found evidence for a correlation
in the arrival directions of cosmic rays with starburst galaxies situated some Mpc
away [2]. In this work we investigate the question whether the distance of the sources
can be determined by the measured energy and shower depth by extending a combined
fit method [3].

A previous analysis established a method to reveal the source properties by assuming
a homogeneous and isotropic source distribution. Sources described by a hard energy
spectrum, low maximum injection energies, and a heavy chemical composition are
favored [3].

In this work we modified the combined fit method by adding a point source over a
homogeneous background in order to resolve the distance and flux contribution of
this source. A statistical fitting procedure based on a Markov Chain Monte Carlo
method was implemented to investigate the source parameters. The new fit method
was tested with a Monte Carlo study of random universes following a fixed source
density describing a distinguished direction of the closest source. Here, we were able to
determine the same constraints found by previous works on the combined fit, forming
a reliable basis for new results.

It is found that the extended combined fit method can resolve the distance of a nearby
source and distinguish between a scenario of sky regions exhibiting a nearby source
(on-target) and an homogeneous background (off-target). To statistically quantify
the performance of this method we scanned the distance parameter of the fit model
for 1000 on-target and 1000 off-target Monte Carlo sets computing the likelihood ratio
of the best fit value at the scanned distance and a null hypothesis described by no
nearby source.

Thus, if the nature follows our physical motivated model, we are able to identify a
point source in a sky region and disfavor a homogeneous background with a median
p-value of 2 - 1072 by using the energy and shower depth pattern.
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Appendix A

Derivation of formulas

A.1 Detailed Derivation of Formula

A.1.1 Gelman-Rubin Diagnostics

We calculate the Gelman-Rubin coefficient for the parameter traces 6;; where ¢ denotes
the chain and 7 the individual sample steps inside a chain. In total we have m chains
and n samples per chain. The calculation follows [44].

We calculate the Gaussian variance of each chain

1 _
sj = — > (05— 05)%, (A1)
=1

the mean of the variance is
1 &,
:EZ}P (A.2)
j=1

the next step we calculate the total mean of the parameter 6 over all chains

> 0;. (A.3)

J=1

Cbll

SIH

The parameter B quantifies the spread between the chains

= — 1%: —9)? (A.4)

=1

.

Finally, the Gelman-Rubin coefficients are computed as

me:u_%yw+%¢3 (A5)
- |Var(h)
= (A.6)
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Appendix B
Additional Plots

B.1 Additional Evaluation Plots
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Figure B.1: The X,,., distribution of the off-target set for the indicated energy bins.
The fit model prediction for the best fit values from Table are shown separated
in 4 mass groups.
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Figure B.2: The marginalized posterior distribution as described in Fig. for the
case of the isotropic set.
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Figure B.3: The marginalized posterior distribution as described in Fig. for the
case of the isotropic set.

5
24
4
11
3
=
|
=0 K
<
2
-14
1
24
r
Lk , , , , 0
18 18.5 19 19.5 20
lOglO(Rcut/eV)

Figure B.4: We show the same scan setup as for Fig. for the case of the off-target
set. The optimum is found at v = 0.34 and R.,; = 18.30 which corresponds to the
case of the combined fit presented in Table
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